熱力学

\[ \newcommand{dn}[3]{\frac{\mathrm{d}^{#3} #1}{\mathrm{d} #2^{#3}}} \newcommand{\d}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\dd}[2]{\frac{\mathrm{d}^2 #1}{\mathrm{d} {#2}^2}} \newcommand{\ddd}[2]{\frac{\mathrm{d}^3 #1}{\mathrm{d} {#2}^3}} \newcommand{\pdn}[3]{\frac{\partial^{#3} #1}{\partial {#2}^{#3}}} \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial {#2}^2}} \newcommand{\pddd}[2]{\frac{\partial^3 #1}{\partial {#2}^3}} \newcommand{\p}{\partial} \newcommand{\D}[2]{\frac{\mathrm{D} #1}{\mathrm{D} #2}} \newcommand{\Re}{\mathrm{Re}} \newcommand{\Im}{\mathrm{Im}} \newcommand{\bra}[1]{\left\langle #1 \right|} \newcommand{\ket}[1]{\left|#1 \right\rangle} \newcommand{\braket}[2]{\left\langle #1 \middle|#2 \right\rangle} \newcommand{\inner}[2]{\left\langle #1 ,#2 \right\rangle} \newcommand{\l}{\left} \newcommand{\m}{\middle} \newcommand{\r}{\right} \newcommand{\f}[2]{\frac{#1}{#2}} \newcommand{\eps}{\varepsilon} \newcommand{\ra}{\rightarrow} \newcommand{\F}{\mathcal{F}} \newcommand{\L}{\mathcal{L}} \newcommand{\t}{\quad} \newcommand{\intinf}{\int_{-\infty}^{+\infty}} \newcommand{\R}{\mathcal{R}} \newcommand{\C}{\mathcal{C}} \newcommand{\Z}{\mathcal{Z}} \newcommand{\bm}[1]{\boldsymbol{#1}} \]

基本法則

第一法則 \[ dU = δQ + δW \] 第二法則 \[ \oint δQ/T \leq 0 \]

マクスウェルの関係式

  1. エネルギー \(U(S,V)\) \[ dU = TdS - pdV \]

    \[ dU = \left(\frac{\partial U}{\partial V}\right)dV + \left(\frac{\partial U}{\partial S}\right)dS \]

    を比較すると,

    \[ -p = \left(\frac{\partial U}{\partial V}\right) \] \[ T = \left(\frac{\partial U}{\partial S}\right) \]

    U が C^2 以上なら二階微分は可換で

    \[ \left(\frac{\partial p}{\partial S}\right)_V = -\left(\frac{\partial T}{\partial V}\right)_S \]

  2. ヘルムホルツエネルギー \(F(T,V) = U - TS\)

  3. ギブスエネルギー \(G = U - TS + pV\)

一般の熱力学的状態方程式

エネルギー保存

\[ dU=Tds-PdV \]

\[ \left(\frac{\partial U}{\partial V}\right)_T=T\left(\frac{\partial S}{\partial V}\right)_T-P \]

マクスウェルの関係式

\[ \left(\frac{\partial S}{\partial V}\right)_T=\left(\frac{\partial P}{\partial T}\right)_V \]

より,

\[ \left(\frac{\partial U}{\partial V}\right)_T=T\left(\frac{\partial P}{\partial T}\right)_V-P \]

\(U,p,V,T\) の関係式