フーリエ変換

\[ \newcommand{dn}[3]{\frac{\mathrm{d}^{#3} #1}{\mathrm{d} #2^{#3}}} \newcommand{\d}[2]{\frac{\mathrm{d} #1}{\mathrm{d} #2}} \newcommand{\dd}[2]{\frac{\mathrm{d}^2 #1}{\mathrm{d} {#2}^2}} \newcommand{\ddd}[2]{\frac{\mathrm{d}^3 #1}{\mathrm{d} {#2}^3}} \newcommand{\pdn}[3]{\frac{\partial^{#3} #1}{\partial {#2}^{#3}}} \newcommand{\pd}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\pdd}[2]{\frac{\partial^2 #1}{\partial {#2}^2}} \newcommand{\pddd}[2]{\frac{\partial^3 #1}{\partial {#2}^3}} \newcommand{\p}{\partial} \newcommand{\D}[2]{\frac{\mathrm{D} #1}{\mathrm{D} #2}} \newcommand{\Re}{\mathrm{Re}} \newcommand{\Im}{\mathrm{Im}} \newcommand{\bra}[1]{\left\langle #1 \right|} \newcommand{\ket}[1]{\left|#1 \right\rangle} \newcommand{\braket}[2]{\left\langle #1 \middle|#2 \right\rangle} \newcommand{\inner}[2]{\left\langle #1 ,#2 \right\rangle} \newcommand{\l}{\left} \newcommand{\m}{\middle} \newcommand{\r}{\right} \newcommand{\f}[2]{\frac{#1}{#2}} \newcommand{\eps}{\varepsilon} \newcommand{\ra}{\rightarrow} \newcommand{\F}{\mathcal{F}} \newcommand{\L}{\mathcal{L}} \newcommand{\t}{\quad} \newcommand{\intinf}{\int_{-\infty}^{+\infty}} \newcommand{\R}{\mathcal{R}} \newcommand{\C}{\mathcal{C}} \newcommand{\Z}{\mathcal{Z}} \newcommand{\bm}[1]{\boldsymbol{#1}} \]

フーリエ変換チートシート

フーリエ級数展開

周期 \(T\)

\[ a_n = \f{2}{T}\int_{0}^{T} f(t)\cos\f{2\pi nt}{T} dt \]

\[ b_n = \f{2}{T}\int_{0}^{T} f(t)\sin\f{2\pi nt}{T} dt \]

\[ f(t) = \f{a_0}{2} + \sum_n \l\{a_n\cos\f{2\pi nt}{T} + b_n\sin\f{2\pi nt}{T}\r\} \]

複素フーリエ級数展開

周期\(T\)

\[ c_n = \f{1}{T} \int_0^T \exp\l(-2\pi i\f{nt}{T}\r) dt \]

\[ f(t) = \sum_{n=-\infty}^{+\infty} c_n \exp\l(2\pi i\f{nt}{T}\r) \]

フーリエ変換

\[ \F [f(t)] = \f{1}{\sqrt{2\pi}} \intinf f(t)\exp(-ikt) dt \]

\[ \F^{-1} [f(k)] = \f{1}{\sqrt{2\pi}} \intinf \exp(ikx) dk \]

微分演算子

\[ \begin{CD} f @>D>> Df \\ @V\F VV @VV \F V \\ \F f @>(ik)>> \F D f = (ik)\F f \end{CD} \]

畳み込み

\[ f*g=\intinf f(\tau)g(t-\tau) d\tau \]

\[ \begin{CD} f\otimes g @>*>> f*g \\ @V\F VV @VV \F V \\ \F[f]\otimes \F[g] @>\times>> \F[f*g] = \F[f]\F[g] \end{CD} \]

関数空間

正規直交系をなす関数集合 \(\{f_n\}\)

\[ \int f_i f_j dx = \delta_{ij} \]

を基底として

\[ f = \sum_n c_n f_n \]

と関数を表す.

フーリエ級数展開

パーシバルの関係式

波動方程式の解法

熱伝達方程式の解法

フーリエ変換

ガウス関数

\[ \begin{aligned} \F[\exp(-\alpha t^2)] &= \f{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \exp(-at^2) \exp(-i\omega t) dt \\ &= \f{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty} \exp\l\{-a\l(t+\f{i\omega}{2\alpha}\r)^2-\f{\omega^2}{4\alpha}\r\} dt \\ &= \f{1}{\sqrt{2\pi}} \exp\l(-\f{\omega^2}{4\alpha}\r) \int_{-\infty}^{\infty} \exp(-a\tau^2) d\tau \\ &= \f{1}{\sqrt{2\pi}} \exp\l(-\f{\omega^2}{4\alpha}\r) \sqrt{\f{\pi}{\alpha}} \\ &= \f{1}{\sqrt{2\alpha}} \exp\l(-\f{\omega^2}{4\alpha}\r) \end{aligned} \]

途中でガウス積分の公式

\[ \int_{-\infty}^{\infty} \exp(-ax^2) dx = \sqrt{\f{\pi}{a}} \]

を用いた。

求めたい積分を \(I=\int_{-\infty}^{\infty} \exp(-ax^2) dx\) とする。

\[ \begin{aligned} I^2 &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(-ax^2) \exp(-ay^2) dx dy \\ &= \int_0^{\infty} \int_{-\pi}^{\pi} \exp(-ar^2) r d\theta dr \\ &= 2\pi \int_0^{\infty} r\exp(-ar^2) dr\\ &= 2\pi \l[-\f{1}{2a} \exp(-ar^2)\r]_0^{\infty} \\ &= \f{\pi}{a} \end{aligned} \]

よって

\[ I=\sqrt{\f{\pi}{a}} \]

熱伝達方程式の解法